Cyclic Cohomology of Hopf Module Algebras
نویسنده
چکیده
We define an equivariant K0-theory for Yetter-Drinfeld algebras over a Hopf algebra with an invertible antipode. We show that there exists a pairing, generalizing Connes’ pairing, between this theory and a suitably defined Hopf algebra equivariant cyclic cohomology theory.
منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملEquivariant Cyclic Cohomology of Hopf Module Algebras
We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).
متن کاملBivariant Hopf Cyclic Cohomology
For module algebras and module coalgebras over an arbitrary bialgebra, we define two types of bivariant cyclic cohomology groups called bivariant Hopf cyclic cohomology and bivariant equivariant cyclic cohomology. These groups are defined through an extension of Connes’ cyclic category Λ. We show that, in the case of module coalgebras, bivariant Hopf cyclic cohomology specializes to Hopf cyclic...
متن کاملBialgebra Cyclic Homology with Coefficients Part I
Cyclic cohomology of Hopf algebras admitting a modular pair was first defined in [2] and further developed in [3] and [4] in the context of transverse geometry. Their results are followed by several papers computing Hopf cyclic (co)homology of certain Hopf algebras such as [15], [5] and [13]. In a series of papers [1], [10], [11], and [6] the authors developed a theory of cyclic (co)homology wh...
متن کاملHopf–hochschild (co)homology of Module Algebras
Our goal in this paper is to define a version of Hochschild homology and cohomology suitable for a class of algebras admitting compatible actions of bialgebras, called “module algebras” (Definition 2.1). Our motivation lies in the following problem: for an algebra A which admits a module structure over an arbitrary bialgebra B compatible with its product structure, the Hochschild or the cyclic ...
متن کامل